Chiral phonons in quartz probed by X

Blog

HomeHome / Blog / Chiral phonons in quartz probed by X

Jan 23, 2024

Chiral phonons in quartz probed by X

Nature (2023)Cite this

Nature (2023)Cite this article

2090 Accesses

38 Altmetric

Metrics details

The concept of chirality is of great relevance in nature, from chiral molecules such as sugar to parity transformations in particle physics. In condensed matter physics, recent studies have demonstrated chiral fermions and their relevance in emergent phenomena closely related to topology1,2,3. The experimental verification of chiral phonons (bosons) remains challenging, however, despite their expected strong impact on fundamental physical properties4,5,6. Here we show experimental proof of chiral phonons using resonant inelastic X-ray scattering with circularly polarized X-rays. Using the prototypical chiral material quartz, we demonstrate that circularly polarized X-rays, which are intrinsically chiral, couple to chiral phonons at specific positions in reciprocal space, allowing us to determine the chiral dispersion of the lattice modes. Our experimental proof of chiral phonons demonstrates a new degree of freedom in condensed matter that is both of fundamental importance and opens the door to exploration of new emergent phenomena based on chiral bosons.

Quasiparticles in solids fundamentally govern many physical properties, and their symmetry is of central importance. Chiral quasiparticles are of particular interest. For example, chiral fermions emerge at degenerate nodes in Weyl semimetals1 and chiral crystals2,3. Their chiral characters are directly manifested by a chiral anomaly7 and lead to enriched topological properties, including selective photoexcitation by circularly polarized light8, chiral photocurrent9 and transport7. The presence of chiral bosons, such as phonons4,5,6,10,11,12,13,14,15,16,17 and magnons6,18,19,20, has also extensively been debated.

Chiral phonons are vibrational modes of solids in which the atoms have a rotational motion perpendicular to their propagation with an associated circular polarization and angular momentum. As a result of their angular momentum, chiral phonons can carry orbital magnetic moments, enabling a phonomagnetic effect analogous to the optomagnetic effect from other helical atomic rotations21,22. Correspondingly, the phonons can create an effective magnetic field, which has been invoked to explain the observation of excited magnons23 and enables their excitation through ultrafast angular-momentum transfer from a spin system24. Whereas a phononic magnetic field has so far been discussed primarily at the Γ point, chiral phonons naturally arise in noncentrosymmetric materials away from the zone centre and are based on a fundamentally different symmetry.

Experimental observation of phonon chirality has proven to be challenging. If atomic rotations are confined in a plane containing the phonon propagation direction (circular phonons), the mode cannot possess a chiral character (Supplementary Information has symmetry considerations) as occurs for non-propagating phonons at Γ and other high-symmetry points. Therefore, results based on optical-probe techniques, such as chiroptical spectroscopy16 and circularly polarized Raman scattering17, are insufficient to identify the presence of chiral phonons because of the large wavelength of optical photons, restricting the exploration very close to the Γ point. The first claim of observation of a chiral phonon was made at the high-symmetry points of a monolayer transition-metal dichalcogenide5, although it has been argued to be inconsistent with symmetry arguments6. Thus, establishing an experimental method that directly verifies the chiral character of phonons is strongly demanded.

In this work, we demonstrate chiral phonons in a chiral material at general momentum points in the Brillouin zone. We probe the chirality of phonons using resonant inelastic X-ray scattering (RIXS) with circularly polarized X-rays. Our strategy rests on the fact that circularly polarized X-rays are chiral and is inspired by the use of resonant elastic X-ray scattering to probe the chirality of a static lattice by using circularly polarized X-rays on screw-axis forbidden reflections25. Using RIXS, circularly polarized chiral photons can couple to dynamic chiral phonon modes by transferring angular momentum, and the process can occur at general momentum points in reciprocal space. Our theoretical analysis shows that the observed circular dichroism in RIXS is caused by the orbitals of the resonant atoms that align in a chiral way determined by the chiral crystal structure; we calculate the angular momentum of the phonons at the corresponding Q point using density-functional theory (DFT).

RIXS is a two-step process in which the energy of the incident photon with a given polarization coincides (resonates) with an atomic X-ray absorption edge of the system26. For RIXS at the O K edge, an incident photon excites an electron from the O 1s inner shell to the 2p outer shell. The combined core hole and excited electron form a short-lived excitation in this intermediate state that interacts with the lattice and creates phonons as it deforms its local environment27,28. The final RIXS step involves the deexcitation of the electron from 2p to 1s, causing the emission of a photon while leaving behind a certain number of phonons in the system. The detected energy and momentum of the emitted photon are directly related to the energy and momentum of the phonon created in the solid.

To illustrate the mechanism by which RIXS excites chiral phonons in quartz, we consider an Si–O chain in which the O ions bond to the Si ions via the 2p orbital pointing toward the central axis of the chain (Fig. 1 and Supplementary Fig. 1). While this O 2p orbital is unchanged in the local frame of the ligand as it revolves around the central axis with angle ϕ, in the global frame its direction changes upon revolution. We describe the spatial coordinate of the phonon by the angle ϕ and denote the creation operator of an electron in the 2p orbital along the global x axis as \({p}_{x}^{\dagger }\) and along the global y axis as \({p}_{y}^{\dagger }\). We construct the RIXS intermediate-state Hamiltonian HI such that during an (adiabatically slow) revolution of the atom around the z axis, the ground-state wave function always points toward the centre of rotation (Supplementary Information has a detailed derivation):

where ss† is the core-hole density operator, the vector operator p = (px, py), and σi denotes the Pauli matrixes with i = x, y, z. The RIXS operator that takes the system from the ground state |0> to the final state |f> with m phonon modes can be evaluated to lowest order in α using the ultrashort core-hole lifetime expansion27. Introducing the circular polarization basis \({{\boldsymbol{\epsilon }}}_{{\bf{c}}}\), where a fully left circularly polarized photon corresponds to \({{\boldsymbol{\epsilon }}}_{{\rm{c}}}^{{\rm{L}}}=\left({\rm{1,0}}\right)\) and a right one to \({{\boldsymbol{\epsilon }}}_{{\rm{c}}}^{{\rm{R}}}=\left({\rm{0,1}}\right)\), the RIXS amplitude becomes (Supplementary Information)

The angular momentum of the photons (opposite between C+ (up, red) and C− (down, blue)) is transferred to a crystal, causing a revolution in this case of anions (orange spheres with p orbitals) relative to their neighbouring cations (green spheres).

This shows that angular momentum is transferred to the phononic system when the incident and scattered photons have different circular polarization. Figure 1 shows conceptually how such interactions between circularly polarized photons and the lattice can launch revolutional lattice vibrations through this angular-momentum transfer.

As our target material, we choose the prototypical chiral crystal quartz (α-SiO2), in which SiO4 tetrahedra form a chiral helix along [001] (Fig. 2). The resulting chiral space group is either P3221 (left quartz) (Fig. 2a) or P3121 (right quartz) (Fig. 2b). A recent DFT study15 pointed out the chirality and phonon angular momentum of some phonon branches and demonstrated the reversal of chirality between opposite enantiomers, as well as the absence of phonon angular momentum at the Γ point.

a–c, Crystal structures of left quartz (a) and right quartz (b) and the Brillouin zone with Q1, where the RIXS spectra have been taken (c).

We performed RIXS experiments with circular polarization (C+/C−) on two quartz crystals with opposite chirality. With incident photon energy tuned around the O K edge reaching an energy resolution of approximately 28 meV, we collected spectra at Q1 = (−0.25, 0, 0.32) reciprocal lattice units (Fig. 2c; Methods has details). The spectrum for various incident photon energies (shown in Fig. 3) shows clear peaks on the energy-loss side at resonance, which become suppressed for energies farther away from resonance. Note that the energy resolution is insufficient to assign the peaks to individual phonons29. All peaks above the energy of the highest phonon mode of approximately 0.2 eV (ref. 29) are the result of higher-harmonic phonon excitations.

a, X-ray absorption spectrum around the O K edge. b, RIXS spectra taken with C+ for left-handed quartz at Q1 = (−0.25, 0, 0.32) for the incident photon energies indicated by the dashed lines in a. Each spectrum in b is vertically shifted to enhance visibility. Error bars are smaller than the line width in a and in standard deviation in b (Methods).

Source data

Figure 4 shows the C+ and C− RIXS spectra from left-handed (Fig. 4a) and right-handed (Fig. 4b) quartz and their dichroic contrasts (Fig. 4c) at 20 K. We see a clear contrast between C+ and C−, and the dichroism changes sign for the opposite chiral enantiomers, indicating that it is caused by chirality of the modes. We find similar contrast between C+ and C− at the other reciprocal points with different RIXS spectra due to different phonon energies (dispersion) and different RIXS cross-sections (Supplementary Fig. 2). These observations demonstrate unambiguously that circularly polarized photons couple to chiral phonons, with the chirality of the phonons defined by the lattice chirality, and that RIXS with circularly polarized X-rays can be used to probe phonon chirality.

a,b, Comparison between left (L) quartz (a) and right (R) quartz (b) taken at the incident photon energy of 534 eV and Q1 = (−0.25, 0, 0.32). c, Extracted circular dichroic components of the data shown in a and b. Error bars are in standard deviations.

Source data

We use DFT to calculate the phonon dispersion and phonon circular polarization for all phonon branches and show their dispersion between Q1 and Γ in Fig. 5a for right quartz (details are found in Methods; Supplementary Figs. 4 and 5 show other directions in reciprocal spaces and components of the circular polarization vector). Note that, since we are interested in low symmetry points in the Brillouin zone, we show a different direction from that in ref. 15, as well as additional bands. The colour scale indicates the phonon circular polarization (S) (ref. 4), which indicates the chirality of a phonon mode; it is defined, for example, for the z component Sz as

a, Low-energy phonon dispersion for right quartz along the Γ to Q1 direction. Colours represent the z component of the phonon circular polarization. b, The same phonon band structure with colours representing mode effective charges (a measure of the degree in which the electronic charge distribution is perturbed by the phonons) in units of the elementary charge. c, The chiral phonon mode at Q1 = (−0.25, 0, 0.32) (indicated with an arrow in a) showing the main chiral revolutions of the oxygen atoms that have a different phase along the chain. d, Associated change in the local quadrupole moment (associated with the O 2p orbital) for a revolving oxygen atom between the phonon at phase 0 and phase π (black vectors represent an increase in the atomic quadrupole moment between its position at phonon phase 0 and its position at phase π, and green vectors represent a decrease). e, The phonon band structure coloured according to the magnitude of the magnetic moment of the phonons in units of the nuclear magneton.

Source data

Here, \({{\epsilon }}_{{\rm{m}}}\) are the phonon eigenvectors of each of the n atoms in the unit cell (normalized such that \({\sum }_{{\rm{m}}}| \langle {{\epsilon }}_{{\rm{m}}}| {{\epsilon }}_{{\rm{m}}}\rangle | =1\)), and \(| {r}_{{\rm{m}},z}\rangle \) and \(| {{\ell }}_{{\rm{m}},z}\rangle \) are eigenvectors corresponding to pure right- and left-handed rotations. The phonon angular momentum (L) is then given by L = ħS (ref. 4). We also report the mode effective charges (Fig. 5b) as a metric of the strength of the interaction between the mode and light, calculated following the method of ref. 30.

When we match the calculated and measured modes, we find that those with strong dichroic contrast are those calculated to have a large chirality. The peak with the largest contrast is at approximately 50 meV for all the reciprocal points we measured (Q1 in Fig. 4c and Q2 = (−0.29, 0.14, 0.32) and Q3 = (−0.25, 0.25, 0.32) in Supplementary Fig. 2), suggesting that a mode that has large phonon circular polarization and energy around 50 meV dominates the contrast. The mode at the energy of approximately 47.6 meV at Q1, which we refer to as mode X, matches the conditions (Supplementary Fig. 4 and Supplementary Table 1, which tabulates the energy and phonon circular polarization of all phonon modes at the measured Q points). Figure 5c and Supplementary Video 1 visualize mode X at Q1 and show that it involves a circular motion of the atoms. Importantly, the mode satisfies the symmetry requirement for a chiral phonon mode.

For non-magnetic quartz, the RIXS spectra at the O K edge are mainly sensitive to the O 2p orbital states. This means that phonon modes that significantly affect, for example, the orientation of the 2p orbital states will create large scattering contrast in RIXS and will also be strongly X-ray polarization dependent. Figure 5d and Supplementary Video 2 visualize the evolution of the local charge quadrupoles at the O site when the chiral phonon mode is excited (Fig. 5c or Supplementary Video 1). These charge quadrupoles reflect the time evolution of the O 2p orbitals, which shows that the dichroic RIXS signal is due to an evolution of the chiral stacking of the O 2p orbital moments in the chiral phonon excitation as described in equations (1) and (2).

Note that the mode with the largest contrast is not the phonon mode with the largest phonon circular polarization. Instead, the mode has a large mode effective charge at Q1, as shown in Fig. 5b. This indicates that the contrast depends on not only the chiral amplitude of a mode itself but also, the modulation of the electronic charges with respect to the plane of the electric fields of the circularly polarized X-rays. Note that there is an additional consideration. Phonon circular polarization specifies a preferred revolution direction of atoms in the excitation, which can only be excited with the matching circular photon polarization (Fig. 1). As modes of opposite chirality have different energies (in Supplementary Fig. 4 and Supplementary Table 1, modes with opposite chirality, degenerated at the Γ point, split at away from the zone centre), the peaks that are composed of several modes show a peak shift when taken with opposite circular polarization (Fig. 4).

In Fig. 5e, we show the associated magnetic moments induced by the chiral motion of the charged ions in the chiral phonons, which we calculate by extending the method used in refs. 21,22 so that it is applicable at an arbitrary point in Q space. We begin by constructing the atomic circular polarization vector Sm as Sm = [Sx,m Sy,m Sz,m] (equation (3)), yielding the angular momentum of each atom as \({{\bf{L}}}_{{\rm{m}}}=\hslash {{\bf{S}}}_{{\rm{m}}}\). The magnetic moment (μm) of each atom participating in the phonon is

where \({\gamma }_{{\rm{m}}}\) is the gyromagnetic ratio tensor, which is derived from Zm, the Born effective charge tensor, and mm, the atomic masses. The phonon magnetic moment is then simply \(\mu {\boldsymbol{=}}{\sum }_{m=1}^{n}{\mu }_{{\rm{m}}}\). We show our calculated mode- and Q-point resolved magnetic moments in Fig. 5e and see that chiral phonons in quartz carry magnetic moments throughout the Brillouin zone, although the calculated magnetic moments are relatively small due to the low values of \({{\boldsymbol{\gamma }}}_{{\rm{m}}}\). These phonon magnetic moments do not normally create a net magnetization due to the presence of time-reversal related pairs with opposite chirality and magnetic moment. If time-reversal symmetry is broken, however, population imbalances between the chiral pairs can be created31. Figure 5e also suggests that the phonon chirality can be investigated directly through interactions with the phonon magnetic moment using, for example, polarized inelastic neutron scattering.

In conclusion, we have used RIXS with circularly polarized X-rays to demonstrate the chiral nature of the phonons in chiral quartz crystals and in turn, have established a fundamental methodology for characterizing chiral phonons. With the technique established by this proof-of-principle study, the chirality of phonons at general momentum points can be characterized, opening up new perspectives in chiral phononics. For example, our work indicates that RIXS can be used to quantify the role of chiral phonons in exotic phenomena proposed in topological materials10,32,33,34, as well as to characterize interactions such as electron and spin couplings with chiral phonons14,35,36,37,38.

RIXS measurements were performed at Beamline I21 at the Diamond Light Source in the UK39. Used photon energy is around the O K edge, and polarization is circular (C+/C−). The energy resolution is estimated as 28 meV from the full-width of the half-maximum of the elastic peak from a carbon tape. Enantiopure single crystals purchased commercially have the widest face perpendicular to the [001] axis. The manipulator installed at the beamline allows us to rotate the crystal along the azimuthal angle, enabling us to access different momentum points during the experiment: Q1 = (−0.25, 0, 0.32), Q2 = (−0.29, 0.14, 0.32) and Q3 = (−0.25, 0.25, 0.32). We defined error bars in an RIXS spectrum as the standard deviation of individual scans from their average spectrum. X-ray absorption spectroscopy obtained before the RIXS measurements is based on the total electron yield method.

Density-functional calculations were performed using the Abinit software package (v.9)40,41 and the Perdew–Burke–Ernzerhof exchange–correlation functional42 with the dispersion correction of ref. 43. The phonon band structure was determined using density-functional perturbation theory40 using norm-conserving pseudopotentials, a 38-Ha plane wave energy cutoff, an 8 × 8 × 8 Monkhorst–Pack grid in k space44 and a 4 × 4 × 4 grid in Q space. Calculations of the electronic and phononic structure were additionally performed explicitly at the experimentally measured Q points. Frozen phonon calculations were performed using the projector-augmented wave method45 to obtain local quadrupole moments with the multipyles postprocessing script46. These calculations used a 192-Ha plane wave energy cutoff within the atomic spheres and a 32-Ha cutoff without. The default pseudopotentials and projector-augmented wave datasets from the Abinit library were used.

Experimental and model data are accessible from the Paul Scherrer Institute Public Data Repository47. Source data are provided with this paper.

The MATLAB code used to obtain phonon circular polarizations and magnetic moments from Abinit output is available at https://github.com/cpromao/phonon_polarization.

Xu, S. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

Article ADS CAS PubMed Google Scholar

Chang, G. et al. Topological quantum properties of chiral crystals. Nat. Mater. 17, 978–985 (2018).

Article ADS CAS PubMed Google Scholar

Gatti, G. et al. Radial spin texture of the Weyl fermions in chiral tellurium. Phys. Rev. Lett. 125, 216402 (2020).

Article ADS CAS PubMed Google Scholar

Zhang, L. & Niu, Q. Chiral phonons at high-symmetry points in monolayer hexagonal lattices. Phys. Rev. Lett. 115, 115502 (2015).

Article ADS PubMed Google Scholar

Zhu, H. et al. Observation of chiral phonons. Science 359, 579–582 (2018).

Article ADS MathSciNet CAS PubMed Google Scholar

Cheong, S.-W. & Xu, X. Magnetic chirality. NPJ Quantum Mater. 7, 40 (2022).

Article ADS Google Scholar

Ong, N. P. & Liang, S. Experimental signatures of the chiral anomaly in Dirac–Weyl semimetals. Nat. Rev. Phys. 3, 394–404 (2021).

Article Google Scholar

Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).

Article ADS CAS Google Scholar

Luo, L. et al. A light-induced phononic symmetry switch and giant dissipationless topological photocurrent in ZrTe5. Nat. Mater. 20, 329–334 (2021).

Article ADS CAS PubMed Google Scholar

Chen, X. et al. Entanglement of single-photons and chiral phonons in atomically thin WSe2. Nat. Phys. 15, 221–227 (2019).

Article CAS Google Scholar

Chen, H., Wu, W., Yang, S. A., Li, X. & Zhang, L. Chiral phonons in kagome lattices. Phys. Rev. B 100, 094303 (2019).

Article ADS CAS Google Scholar

Kishine, J., Ovchinnikov, A. S. & Tereschchenko, A. A. Chirality-induced phonon dispersion in a noncentrosymmetric micropolar crystal. Phys. Rev. Lett. 125, 245302 (2020).

Article ADS CAS PubMed Google Scholar

Yin, T. et al. Chiral phonons and giant magneto-optical effect in CrBr3 2D magnet. Adv. Mater. 33, 2101618 (2021).

Article CAS Google Scholar

Jeong, S. G. et al. Unconventional interlayer exchange coupling via chiral phonons in synthetic magnetic oxide heterostructures. Sci. Adv. 8, eabm4005 (2022).

Article ADS CAS PubMed PubMed Central Google Scholar

Chen, H. et al. Chiral phonons diode effect in chiral crystals. Nano Lett. 22, 1688–1693 (2022).

Article ADS CAS PubMed Google Scholar

Choi, W. J. et al. Chiral phonons in microcrystals and nanofibrils of biomolecules. Nat. Photon. 16, 366–373 (2022).

Article ADS CAS Google Scholar

Ishito, K. et al. Truly chiral phonons in α-HgS observed by circularly polarized Raman spectroscopy. Nat. Phys. 19, 35–39 (2023).

Article CAS Google Scholar

Roessli, B., Böni, P., Fischer, W. E. & Endoh, Y. Chiral fluctuations in MnSi above the Curie temperature. Phys. Rev. Lett. 88, 237204 (2002).

Article ADS CAS PubMed Google Scholar

Nambu, Y. et al. Observation of magnon polarization. Phys. Rev. Lett. 125, 027201 (2020).

Article ADS CAS PubMed Google Scholar

Liu, Y. et al. Switching magnon chirality in artificial ferrimagnet. Nat. Commun. 13, 1264 (2022).

Article ADS CAS PubMed PubMed Central Google Scholar

Juraschek, D. M. & Spaldin, N. A. Orbital magnetic moments of phonons. Phys. Rev. Mater. 3, 064405 (2019).

Article CAS Google Scholar

Juraschek, D. M., Narang, P. & Spaldin, N. A. Phono-magnetic analogs to opto-magnetic effects. Phys. Rev. Research 2, 043035 (2020).

Article ADS CAS Google Scholar

Nova, T. F. et al. An effective magnetic field from optically driven phonons. Nat. Phys. 13, 132–136 (2017).

Article CAS Google Scholar

Tauchert, S. R. et al. Polarized phonons carry angular momentum in ultrafast demagnetization. Nature 602, 73–77 (2022).

Article ADS CAS PubMed Google Scholar

Tanaka, Y. et al. Right handed or left handed? Forbidden x-ray diffraction reveals chirality. Phys. Rev. Lett. 100, 145502 (2008).

Article ADS PubMed Google Scholar

Ament, L. J. P., van Veenendaal, M., Devereaux, T. P., Hill, J. P. & van den Brink, J. Resonant inelastic x-ray scattering studies of elementary excitations. Rev. Mod. Phys. 83, 705–767 (2011).

Article ADS CAS Google Scholar

Ament, L. J. P., van Veenendaal, M. & van den Brink, J. Determining electron-phonon coupling strength from resonant inelastic x-ray scattering at transition metal L-edges. Europhys. Lett. 95, 27008 (2011).

Article ADS Google Scholar

Moser, S. et al. Electron-phonon coupling in the bulk of anatase TiO2 measured by resonant inelastic x-ray spectroscopy. Phys. Rev. Lett. 115, 096404 (2015).

Article ADS CAS PubMed Google Scholar

Gonze, X., Charlier, J.-C., Allan, D. C. & Teter, M. P. Interatomic force constants from first principles: the case of α-quartz. Phys. Rev. B 50, 13035–13038 (1994).

Article ADS CAS Google Scholar

Gonze, X. & Lee, C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355–10368 (1997).

Article ADS CAS Google Scholar

Park, S. & Yang, B.-J. Phonon angular momentum Hall effect. Nano Lett. 20, 7694–7699 (2020).

Article ADS CAS PubMed Google Scholar

Süsstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).

Article ADS PubMed Google Scholar

Thingstad, E., Kamra, A., Brataas, A. & Sudbø, A. Chiral phonon transport induced by topological magnons. Phys. Rev. Lett. 122, 107201 (2019).

Article ADS CAS PubMed Google Scholar

Chen, L., Boulanger, M.-E., Wang, Z.-C., Tafti, F. & Taillefer, L. Large phonon thermal Hall conductivity in the antiferromagnetic insulator Cu3TeO6. Proc. Natl Acad. Sci. USA 119, e2208016119 (2022).

Article CAS PubMed PubMed Central Google Scholar

Korenev, V. L. et al. Long-range p-d exchange interaction in a ferromagnet-semiconductor hybrid structure. Nat. Phys. 12, 85–91 (2016).

Article CAS Google Scholar

Xu, S.-Y. et al. Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide. Nature 578, 545–549 (2020).

Article ADS CAS PubMed Google Scholar

Cheng, B. et al. A large effective phonon magnetic moment in a Dirac semimetal. Nano Lett. 20, 5991–5996 (2020).

Article ADS CAS PubMed Google Scholar

Grissonnanche, G. et al. Chiral phonons in the pseudogap phase of cuprates. Nat. Phys. 16, 1108–1111 (2020).

Article CAS Google Scholar

Zhou, K.-J. et al. I21: an advanced high-resolution resonant inelastic X-ray scattering beamline at Diamond Light Source. J. Synchrotron Radiat. 29, 563–580 (2022).

Article CAS PubMed PubMed Central Google Scholar

Gonze, X. et al. The ABINIT project: impact, environment and recent developments. Comput. Phys. Commun. 248, 107042 (2020).

Article CAS Google Scholar

Bottin, F., Leroux, S., Knyazev, A. & Zérah, G. Large-scale ab initio calculations based on three levels of parallelization. Comput. Mater. Sci. 42, 329–336 (2008).

Article CAS Google Scholar

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

Article ADS CAS PubMed Google Scholar

Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correlation (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

Article ADS PubMed Google Scholar

Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

Article ADS MathSciNet Google Scholar

Torrent, M., Jollet, F., Bottin, F., Zérah, G. & Gonze, X. Implementation of the projector augmented-wave method in the ABINIT code: application to the study of iron under pressure. Comput. Mater. Sci. 42, 337–351 (2008).

Article CAS Google Scholar

Merkel, M. E. multipyles v.1.0.0. Zenodo https://doi.org/10.5281/zenodo.6907024 (2022).

Ueda, H. Chiral phonons probed by X rays. PSI Public Data Repository https://doi.org/10.16907/7b8bd7d7-d897-4ff6-9cf4-e8335a6e4133 (2022).

Download references

We thank A. Nag for advising on data analysis and stimulating discussion. The resonant inelastic X-ray scattering experiments were performed at beamline I21 at the Diamond Light Source (proposal MM28375). H.U. was supported by the National Centers of Competence in Research in Molecular Ultrafast Science and Technology (grant 51NF40-183615) from the Swiss National Science Foundation and from the European Union's Horizon 2020 Research and Innovation programme (Marie Skłodowska-Curie Grant 801459–FP-RESOMUS). This work was funded by the European Research Council under the European Union's Horizon 2020 Research and Innovation programme (grant 810451). Computational resources were provided by ETH Zurich and the Swiss National Supercomputing Centre (project eth3). C.P.R. acknowledges the support of the European Union and Horizon 2020 through the Marie Skłodowska-Curie Fellowship (grant no. 101030352). J.v.d.B. thanks the Deutsche Forschungsgemeinschaft for support through the Würzburg–Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter ct.qmat (EXC 2147 Project no. 39085490) and the Collaborative Research Center SFB 1143 (project no. 247310070).

Open Access funding provided by Lib4RI – Library for the Research Institutes within the ETH Domain: Eawag, Empa, PSI & WSL.

Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland

Hiroki Ueda & Urs Staub

SwissFEL, Paul Scherrer Institute, Villigen, Switzerland

Hiroki Ueda

Diamond Light Source, Didcot, UK

Mirian García-Fernández, Stefano Agrestini & Ke-Jin Zhou

Department of Materials, ETH Zurich, Zurich, Switzerland

Carl P. Romao & Nicola A. Spaldin

Institute for Theoretical Solid State Physics, IFW Dresden, Dresden, Germany

Jeroen van den Brink

Institute for Theoretical Physics and Würzburg–Dresden Cluster of Excellence ct.qmat, Dresden University of Technology, Dresden, Germany

Jeroen van den Brink

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

H.U. and U.S. conceived and designed the project. H.U., M.G.F., S.A., K-J.Z. and U.S. performed resonant inelastic X-ray scattering experiments. H.U. analysed the experimental data. C.P.R. and N.A.S. performed density-functional theory calculations. J.v.d.B. contributed to the mechanism by which resonant inelastic X-ray scattering excites chiral phonons. H.U., C.P.R., J.v.d.B., N.A.S. and U.S. wrote the manuscript with contributions from all authors.

Correspondence to Hiroki Ueda or Urs Staub.

The authors declare no competing interests.

Nature thanks Derek Meyers and the other, anonymous, reviewers(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Notes 1–5, Figs. 1–5, Tables 1–3 and References.

Supplementary Video 1 from Fig. 5c visualizing mode X at Q1 shows that it involves a circular motion of the atoms.

Supplementary Video 2 visualizes the evolution of the local charge quadrupoles at the O site when the chiral phonon mode is excited.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

Ueda, H., García-Fernández, M., Agrestini, S. et al. Chiral phonons in quartz probed by X-rays. Nature (2023). https://doi.org/10.1038/s41586-023-06016-5

Download citation

Received: 20 January 2023

Accepted: 27 March 2023

Published: 07 June 2023

DOI: https://doi.org/10.1038/s41586-023-06016-5

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.